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LETTER TO THE EDITOR 

Excess surface free energy in a two-dimensional model of a 
biomembrane 

J G Brankovt and V B Priezzhev 
Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, 141980, 
USSR 

Received 28 December 1989, in final form 13 March 1990 

Abstract. The staggered quadratic dimer model of a biomembrane is considered in the 
case of a lattice with modified activities of the vertical bounds in a selected row. An exact 
expression for the excess surface free energy is obtained and its dependence on the bulk 
parameters which control the density, flexibility and ordering of the polymer chains is 
investigated. 

Two-dimensional lattice models occupy an important place among the statistical models 
of biomembranes [ 1,2] due to the possibility of obtaining an exact solution. Most of 
them belong to the class of ‘free-fermion’ models [3], the well known representative 
of which is the two-dimensional Ising model. Free-fermion models of polymers are 
usually formulated in terms of dimer problems on different lattices with various 
distributions of weights over the lattice bonds. The choice of the lattice and the weight 
distribution determines the configurational properties of the polymers, reflecting in 
three main features: density, flexibility and degree of ordering. Nagle [ 13 has suggested 
a sufficiently simple model on the square lattice which incorporates all of the three 
desirable features and represents a generalisation of the previously introduced dimer 
model studied by Kasteleyn on the honeycomb lattice (K-model). In the review article 
[4], which summarises the achievements in the study of dimer models on anisotropic 
lattices, this model is called the staggered quadratic Kasteleyn model; here we will 
refer to it as the SQ model. The SQ model is defined on a quadratic lattice with a 
chessboard alternation of the activities U and U of vertical bonds and activity z of all 
the horizontal bonds; see figure l ( a ) .  The correspondence between the dimer and 

( a )  ( b l  

Figure 1. The staggered quadratic model with a linear defect-the row of modified vertical 
bounds is indicated by arrows. ( a )  The distribution of bond activities. ( b )  The correspon- 
dence between the dimer and polymer representations of the model. 

t On leave of absence from Institute of Mechanics and Biomechanics, Bulgarian Academy of Sciences, Sofia 
11 13, Bulgaria. 
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polymer representations of this model [ 1,4] is shown in figure l ( b ) .  The number of 
polymers on the lattice is determined by the difference between the dimer occupation 
numbers of U- and u-bonds in a row. The number of gauche bonds of the polymer 
chains (strictly speaking, the number of slanted chain links) is determined by the 
number of horizontal dimers, each of weight z. A completely ordered state corresponds 
to all vertical u-bonds being occupied. 

Most of the solutions obtained so far for biomembrane models, including the SQ 

model, pertain to the translationally invariant case when the two-dimensional lattice 
is wrapped on a torus. However, the study of the surface tension U of the membrane, 
as well as the interaction of membrane polymers with macroscopic impurities, requires 
the solution for a lattice with boundaries. In [ 5 ]  the K-model with a boundary parallel 
to the main polymer orientation has been solved and it has been found that U - p2 ,  p 
being the polymer density, whereas in the three-dimensional case (T - p3'2. Of consider- 
ably greater interest is the investigation of the natural membrane surface, i.e. a boundary 
perpendicular to the polymer orientation. The main purpose of this work is to study 
the effect of the bulk polymer statistics on the surface tension due to the presence of 
such a boundary. 

The unit cell of the translationally invariant SQ model contains four lattice sites. 
The introduction of a boundary would require the change of the vertical bonds in a 
selected row from their bulk values U and v to some new values 6 and 7. Clearly, this 
would lead to the problem of diagonalising a rather unwieldly matrix. A radical 
simplification of the problem may be achieved if we note that between the partition 
function of the SQ model with a linear defect, ASQ(Z, U, U ;  6, T ) ,  and the partition 
function of the homogeneous dimer model (HQ-model) with U = U = y having the same 
defect A H Q ( z ,  y ;  6, v), there exists a simple one-to-one correspondence. This correspon- 
dence arises due to the conservation law formulated in [4]: for each lattice row the 
difference between the number of dimers on u-bonds and the number of dimers on 
u-bonds is the same. Naturally, this conservation law reflects the continuity of the 
polymer chains. 

Consider the dimer problem on a square lattice of size M x N wrapped on a torus. 
Let the activities of the lattice bonds be distributed according to figure l ( a ) .  Under 
multiplication of all the activities by a constant A, the partition function of the model 
changes by a trivial factor A 2MN. If one chooses A = (UU)-"* and takes into account 
that nu - n, = ( N  - l)A, where nu (n,) is the total number of dimers on the u-bonds 
(U-bonds), and ne - T~ = A, then one obtains 

(1) 

Here the summation is carried over all dimer configurations and the symbol 'tilde' 
means that the corresponding activity has been multiplied by A. Consider now the 
homogeneous model ( HQ model) with activity of the horizontal bonds x, of the vertical 
bonds U = U = y and with the same linear defect. Its partition function is 

( 2 )  

By comparison of the right-hand sides of equations (1) and ( 2 )  we establish the 
relationship 

A s d z ,  U, U ;  6 , ~ )  = ( U V ) - ~ " L ~ ( X ,  1; to e", Toe-") (3) 
where 

x = 2(uu)-"2 5 o = t l u  To= T / V  (Y = 5 ln(u/u).  (4) 

( U U ) - M N  1 ; n z [ i c ( N - i )  n c [ + ~ ( N - i ) ] n v  ASQ(Z, U, U ;  6, 7) = 1 z " ~ u " ~ u " ~ ~ " ~ ~ " ~  = 1 
{C) t c )  

AHQ(X, y ;  6, 7) = c Xn'yn'6ncTnn* 
( e )  
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This relationship allows one to study the simpler model, the HQ model with a linear 
defect. The latter problem has been already considered in our paper [6] with relation 
to the dimer model of crystallisation suggested there. In the limit of an infinitely long 
cylinder (oox N), exact expressions have been obtained for the densities p k N ) ,  p;” of 
dimers on the 6, 77 lattice bonds, valid for any even N: 

p : N ) ( X ,  Y; 6,771 

~ ( c p )  = x(sin cpl(y2+x2 sin‘ ( P ) - I ’ ~  
( 6 )  

The expression for p;” may be obtained from ( 5 )  by interchanging 6 and 77. 

taking into account equation (3), we obtain 
Starting from the definition of the excess surface free energy in the SQ model and 

d g ; ’ ( z ,  4 U ;  5, 77) 
=ln[Ak:)(z, U, U ;  U, u) /A&gj”(z ,  U, U ;  6, 77)] 

(7) 

where the parameters x, to, qo and a have been defined in (4). In the thermodynamic 
limit N + CO equation (7) leads to the expression 

uso( 5 U ,  U ;  6, 17 ) 

where the parameter A is a linear function of the polymer density p, p = ; + A  and 
depends only on the bulk lattice activities: 

(9) 
[ sgn( bu - U )  l u - u l a 2 z .  

In the right-hand side of (8) ln ( t /u )  should be taken when U 2 U and ln(v/u) when 
U s U. We emphasise that here the density p has been defined as the number of polymer 
chains per unit length of the cross section perpendicular to their main orientation and, 
therefore, it differs from the chain density used by Nagle [l]. 



L508 Letter to the Editor 

The behaviour of the excess surface free energy at a small polymer density, p + 0 
when u - u + 2 z ,  is given by the expansion: 

It is seen that usQ depends linearly on p unlike the U - p ’  dependence in the case of 
a boundary parallel to the chain orientation [5]. The sign of the proportionality 
coefficient depends on the relative magnitude of the bulk parameters U, u and the 
boundary parameters 5, 77, i.e. on the properties of the boundary. The conservation 
law excludes the possibility of speaking about ‘attracting’ or ‘repelling’ boundary 
conditions, since the number of polymer chains is conserved in each cross section of 
the membrane. It is convenient instead to introduce the notion of ’complementary’ 
boundary conditions. To clarify the physical meaning of this notion, let us consider 
small deviations from the translationally invariant case by setting 5 = U + du, 7 = U + du. 
Then, the coefficient of p in the expression (10) equals -(du -du)/(  u + U). Using (9), 
this can be written as 

2T’Z 
dp=-- P dP. 

1 27rz cos[7r(p - 3 1  
(du -do)  = - -- 

u + u  u + u  u + u  

Therefore, if du and du are sufficiently small and du > du, which corresponds to an 
increase of the polymer density p, the coefficient of p in (10) is negative. So in this 
case the replacement of the bulk activities U, U by the corresponding surface values 5, 
77 results in a decrease in the excess free energy. Such boundaries we call complemen- 
tary to the bulk with respect to the polymer density. In the opposite case, du < du, 
the coefficient of p is positive and the excess free energy increases. 

Similarly, in the limit of close polymer packing, p + 1 when U - u +. 2z, we obtain 

It can be readily checked that the same correspondence between complementarity of 
the boundary conditions and the sign of the coefficient of p also holds in this case. 

Consider now the excess surface free energy in the limit of small polymer flexibility. 
As a measure of flexibility we choose the density of the horizontal dimers in the SQ 

model, for which Nagle [ l ]  has obtained the expression (in our notation) 

)I. [ 7T ( 2 ( u u + z 2 )  
1 

p : ( z , u , u ) = ;  1--cos-I 1- 

In the limit p= + 0, when z ( u u ) - ” ’ +  0 at a fixed polymer density p, we obtain 

For interpretation of the sign of the linear term in (14) we turn again to the notion 
of complementarity. Note that due to (9) the flexibility pz at constant p is a monotoni- 
cally increasing function of the parameter x = z( uu)-I’’. Let us replace U, U by the 
corresponding surface values 5, 77 and consider the new value of this parameter 
x‘= z ( ~ ~ ) - ” ’ .  If x’> x, that replacement would lead to an increase in the density of 
horizontal dimers, i.e. to an increase in the number of slanted polymer links. We call 
such a boundary complementary to the bulk with respect to flexibility. Then the 
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coefficient of p z  in expansion (14) is negative for complementary boundary conditions 
and positive for non-complementary. 

Naturally, the results obtained here for the surface tension of a two-dimensional 
membrane have a purely model character. A derivation of similar relationships for 
the three-dimensional model of a biomembrane suggested by Izuyama and Akutsu in 
[7] would bring the theory closer to real experiments. 
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